DÉRIVATION (Partie 2)

I. Fonction dérivée d'une fonction polynôme du troisième degré

Soit f une fonction polynôme du troisième degré définie par $f(x) = 2x^3 - 3x^2 + 5x - 1$.

Pour déterminer la fonction dérivée f, on applique la technique suivante :

$$f(x) = 2x^{2} - 3x^{2} + 5x - 1$$

$$f'(x) = 3 \times 2x^2 - 2 \times 3x + 5$$

Définition : Soit f une fonction polynôme du troisième degré définie sur $\mathbb R$ par $f(x) = ax^3 + bx^2 + cx + d$.

On appelle **fonction dérivée** de f, notée f, la fonction définie sur \mathbb{R} par $f'(x) = 3ax^2 + 2bx + c$.

Méthode : Déterminer la fonction dérivée d'une fonction polynôme du troisième degré

Déterminer les fonctions dérivées des fonctions suivantes :

a)
$$f(x) = x^3 - 3x^2 + 2x - 5$$

b)
$$g(x) = 5x^3 + 2x^2 + 2x - 7$$

a)
$$f(x) = x^3 - 3x^2 + 2x - 5$$
 b) $g(x) = 5x^3 + 2x^2 + 2x - 7$ c) $h(x) = -2x^3 - 3x^2 - 7x + 8$

d)
$$k(x) = -x^3 + x^2 + 1$$
 e) $l(x) = -4x^3 + 1$ f) $m(x) = -x^3 + 7x$

e)
$$l(x) = -4x^3 +$$

f)
$$m(x) = -x^3 + 7x$$

a)
$$f(x) = x^3 - 3x^2 + 2x - 5$$

a)
$$f(x) = x^3 - 3x^2 + 2x - 5$$
 donc $f'(x) = 3 \times x^2 - 2 \times 3x + 2 = 3x^2 - 6x + 2$

b)
$$g(x) = 5x^3 + 2x^2 + 2x - 7$$

donc
$$g'(x) = 3 \times 5x^2 + 2 \times 2x + 2 = 15x^2 + 4x + 2$$

c)
$$h(x) = -2x^3 - 3x^2 - 7x + 8$$

c)
$$h(x) = -2x^3 - 3x^2 - 7x + 8$$
 donc $h'(x) = -2 \times 3 \times x^2 - 2 \times 3x - 7 = -6x^2 - 6x - 7$

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

d)
$$k(x) = -x^3 + x^2 + 1$$
 donc $k'(x) = -3 \times x^2 + 2 \times x = -3x^2 + 2x$

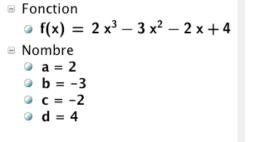
e)
$$l(x) = -4x^3 + 1$$
 donc $l'(x) = -3 \times 4x^2 = -12x^2$

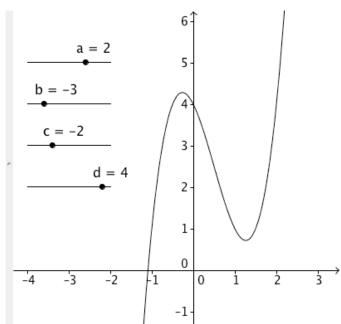
f)
$$m(x) = -x^3 + 7x$$
 donc $m'(x) = -3 \times x^2 + 7 = -3x^2 + 7$

II. Variations d'une fonction polynôme du troisième degré

1) Observation sur quelques exemples

À l'aide de la calculatrice ou d'un logiciel, on observe les variations de quelques fonctions polynômes du troisième degré.





2) Etude des variations à l'aide de la fonction dérivée

<u>Théorème (rappel)</u>: Soit une fonction f définie et dérivable sur un intervalle I.

- Si $f'(x) \le 0$, alors f est décroissante sur l.
- Si $f'(x) \ge 0$, alors f est croissante sur I.

Méthode : Étudier les variations d'une fonction polynôme du troisième degré

Vidéo https://youtu.be/23_Ba3N0fu4

EXEMPLE 1

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 2x^2 + 2x$.

- 1) Calculer la fonction dérivée de f.
- 2) Déterminer le signe de f ' en fonction de x.
- 3) Dresser le tableau de variations de *f*.
- 4) À l'aide de la calculatrice, représenter graphiquement la fonction f.
- 1) Pour tout x réel, on a : $f'(x) = 3x^2 + 4x + 2$.
- 2) Commençons par résoudre l'équation f'(x) = 0:

Le discriminant du trinôme $3x^2 + 4x + 2$ est égal à $\Delta = 4^2 - 4 \times 3 \times 2 = -8$

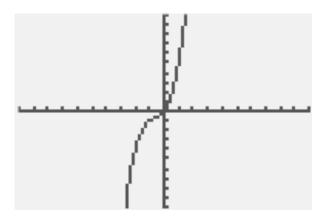
 Δ < 0 donc l'équation f'(x) = 0 ne possède pas de solution.

Le coefficient de x^2 , égal à 3, est positif, donc la parabole est tournée dans le sens « cuvette ». La dérivée est donc positive pour tout x.

3) On en déduit le tableau de variations de f:

х	-∞ +∞
f'(x)	+
f	

4)



EXEMPLE 2

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$.

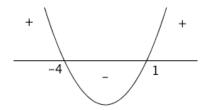
- 1) Calculer la fonction dérivée de f.
- 2) Déterminer le signe de f ' en fonction de x.
- 3) Dresser le tableau de variations de *f*.
- 4) À l'aide de la calculatrice, représenter graphiquement la fonction f.

- 1) Pour tout x réel, on a : $f'(x) = 3x^2 + 2 \times \frac{9}{2}x 12 = 3x^2 + 9x 12$.
- 2) Commençons par résoudre l'équation f'(x) = 0:

Le discriminant du trinôme $3x^2 + 9x - 12$ est égal à $\Delta = 9^2 - 4 \times 3 \times (-12) = 225$

L'équation possède deux solutions :
$$x_1 = \frac{-9 - \sqrt{225}}{2 \times 3} = -4$$
 et $x_2 = \frac{-9 + \sqrt{225}}{2 \times 3} = 1$

Le coefficient de x^2 , égal à 3, est positif, donc la parabole est tournée dans le sens « cuvette ». La dérivée est donc positive à l'extérieur de ses racines -4 et 1.

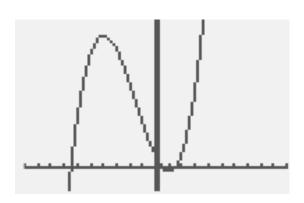


3) On en déduit le tableau de variations de f:

x		-4		1		+∞
f'(x)	+	Φ	-	Φ	+	
f		61		$-\frac{3}{2}$		*

En effet,
$$f(-4) = (-4)^3 + \frac{9}{2}(-4)^2 - 12 \times (-4) + 5 = 61$$
 et $f(1) = 1^3 + \frac{9}{2} \times 1^2 - 12 \times 1 + 5 = -\frac{3}{2}$.

4)



Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales