MATRICES - Chapitre 2/2

Partie 1 : Écriture matricielle d'un système linéaire

Exemple:

On considère le système (S) suivant : $\begin{cases} 5x + 2y = 16 \\ 4x + 3y = 17 \end{cases}$

On pose : $A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $B = \begin{pmatrix} 16 \\ 17 \end{pmatrix}$.

On a alors : $A \times X = \begin{pmatrix} 5x + 2y \\ 4x + 3y \end{pmatrix}$

Ainsi, le système peut s'écrire : $A \times X = B$

<u>Propriété</u> : Soit A une matrice carrée inversible de taille n et B une matrice colonne à n lignes.

Alors le système linéaire d'écriture matricielle $A \times X = B$ admet une unique solution donnée par la matrice colonne $A^{-1}B$.

<u>Démonstration</u>:

$$A \times X = B$$
 alors $X = A^{-1}B$.

Remarque:

Dans le contexte de la propriété précédente, si *A* n'est pas inversible alors le système correspondant possède une infinité de solutions ou aucune solution.

Méthode: Résoudre un système à l'aide des matrices

Vidéo https://youtu.be/vhmGn_x7UZ4

Résoudre le système (S) suivant : $\begin{cases} 5x + 2y = 16 \\ 4x + 3y = 17 \end{cases}$

Correction

On a vu plus haut qu'en posant $A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $B = \begin{pmatrix} 16 \\ 17 \end{pmatrix}$. Le système peut s'écrire sous forme matricielle : $A \times X = B$.

En calculant l'inverse de la matrice A, on a : $A^{-1}=\begin{pmatrix} \frac{3}{7} & \frac{-2}{7} \\ \frac{-4}{7} & \frac{5}{7} \end{pmatrix}$.

Ainsi
$$X = A^{-1}B = \begin{pmatrix} \frac{3}{7} & \frac{-2}{7} \\ \frac{-4}{7} & \frac{5}{7} \end{pmatrix} \begin{pmatrix} 16 \\ 17 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Le système a donc pour solution le couple (x; y) = (2; 3).

Partie 2 : Suites de matrices colonnes

1) Exemples:

- a) La suite (U_n) définie pour tout entier naturel n par $U_n = \binom{n^2}{3n+1}$ est une suite de matrices colonnes dont les coefficients sont les termes des suites numériques (u_n) et (v_n) définies pour tout entier naturel n par $u_n = n^2$ et $v_n = 3n + 1$.
- b) Soit deux suites numériques couplées (u_n) et (v_n) définies pour tout entier naturel n par

$$: u_0 = 2, v_0 = 4 \text{ et} \begin{cases} u_{n+1} = 2u_n - 3v_n + 1 \\ v_{n+1} = -u_n + 5v_n - 4 \end{cases}$$

On pose pour tout entier naturel $n:U_n=\binom{u}{n}$

On pose encore : $A = \begin{pmatrix} 2 & -3 \\ -1 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$

On a alors $U_0 = \binom{2}{4}$ et pour tout entier naturel n, la relation matricielle de récurrence $U_{n+1} = AU_n + B$.

$$AU_n + B = \begin{pmatrix} 2 & -3 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} + \begin{pmatrix} 1 \\ -4 \end{pmatrix} = \begin{pmatrix} 2u_n - 3v_n + 1 \\ -u_n + 5v_n - 4 \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = U_{n+1}$$

c) Soit une suite numérique (u_n) définie par une relation de récurrence d'ordre 2 :

$$u_0 = 2$$
, $u_1 = -1$ et $u_{n+2} = 2u_{n+1} + 3u_n$.

On pose pour tout entier naturel $n: U_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$

On pose encore : $A = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$.

On a alors $U_0 = \binom{2}{-1}$ et pour tout entier naturel n, la relation matricielle de récurrence :

$$U_{n+1}=AU_{n}. \\$$

En effet,
$$AU_n = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ 3u_n + 2u_{n+1} \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_{n+2} \end{pmatrix} = U_{n+1}$$

2) Terme général d'une suite de matrices

<u>Propriété</u>: Soit une suite de matrices colonnes (U_n) de taille p telle que pour tout entier naturel n, on a $U_{n+1} = AU_n$ où A est une matrice carrée de taille p. Alors, pour tout entier naturel n, on a : $U_n = A^n U_0$.

Démonstration:

On démontre cette propriété par récurrence.

- Initialisation : $U_0 = A^0 U_0$ car $A^0 = I_p$
- Hérédité:
 - Hypothèse de récurrence :

Supposons qu'il existe un entier k tel que la propriété soit vraie : $U_k = A^k U_0$

- <u>Démontrons que</u> : La propriété est vraie au rang k+1 : $U_{k+1}=A^{k+1}U_0$ $U_{k+1}=AU_k=A(A^kU_0)=(AA^k)U_0=A^{k+1}U_0$

$$U_{k+1} = AU_k = A(A^k U_0) = (AA^k)U_0 = A^{k+1}U_0$$

• Conclusion:

La propriété est vraie pour n=0 et héréditaire à partir de ce rang. D'après le principe de récurrence, elle est vraie pour tout entier naturel n, soit : $U_n=A^nU_0$.

Méthode : Calculer des termes d'une suite à l'aide de matrices

Vidéo https://voutu.be/62U34Kl4o1l

Soit deux suites numériques couplées (u_n) et (v_n) définies pour tout entier naturel n par :

$$u_0 = 1, v_0 = -1 \text{ et } \begin{cases} u_{n+1} = 3u_n - v_n \\ v_{n+1} = -2u_n + 2v_n \end{cases}$$

Calculer u_6 et v_6 .

Correction

On pose pour tout entier naturel $n: U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$

On pose encore : $A = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}$.

On a alors $U_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et pour tout entier naturel n, la relation matricielle de récurrence : $U_{n+1} = AU_n$.

On alors $U_n = A^n U_0$ et donc en particulier $U_6 = A^6 U_0$.

Soit en s'aidant de la calculatrice :

$$U_6 = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}^6 \times \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2731 & -1365 \\ -2730 & 1366 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4096 \\ -4096 \end{pmatrix}$$

On en déduit que $u_6 = 4096$ et $v_6 = -4096$.

3) Convergence de suites de matrices colonnes

<u>Définitions</u>: On dit qu'une suite de matrices colonnes (U_n) de taille p est **convergente** si les p suites dont les termes sont les p coefficients de (U_n) sont convergentes.

La **limite** de cette suite est la matrice colonne dont les coefficients sont les p limites obtenues.

Dans tous les autres cas, on dit que la suite est divergente.

Exemples:

Vidéo https://youtu.be/dbP7R-9Q2_s

a) La suite (U_n) définie pour tout entier naturel n par $U_n = \binom{n^2}{3n+1}$ est divergente car $\lim_{n \to \infty} n^2 = +\infty$ et $\lim_{n \to \infty} 3n+1 = +\infty$.

b) La suite
$$(U_n)$$
 définie pour tout entier naturel n non nul par $U_n = \begin{pmatrix} \frac{1}{n} \\ \frac{n^2+2}{n^2+1} \end{pmatrix}$ est

convergente et sa limite est la matrice colonne $U = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

<u>Propriété</u>: (U_n) est une suite de matrices colonnes de taille p définie par la relation matricielle de récurrence $U_{n+1} = AU_n + B$ où A est une matrice carrée de taille p et B est une matrice colonne à p lignes.

Si la suite (U_n) est convergente alors sa limite U est une matrice colonne vérifiant l'égalité U = AU + B.

Démonstration:

 $\lim_{n\to +\infty} U_{n+1} = U$ et $\lim_{n\to +\infty} AU_n + B = AU + B$. Par unicité des limites, on a U = AU + B.

Méthode : Recherche d'une suite constante de matrices vérifiant une relation de récurrence

Vidéo https://youtu.be/C-2-1vf-O4A

Soit une suite (U_n) de matrices colonnes définies pour tout entier naturel n par $U_{n+1} = AU_n + B$ avec $A = \begin{pmatrix} 2 & 0.5 \\ 3 & -2 \end{pmatrix}$ et $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Rechercher, si elle existe, la suite (U_n) constante.

Correction

Résolvons l'équation matricielle U=AU+B. Soit U-AU=B soit encore $(I_2-A)U=B$ Et donc $U=(I_2-A)^{-1}B$.

$$I_2 - A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0.5 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} -1 & -0.5 \\ -3 & 3 \end{pmatrix}$$

A l'aide la calculatrice, on obtient :

$$(I_2 - A)^{-1} = \begin{pmatrix} -1 & -0.5 \\ -3 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{-2}{3} & \frac{-1}{9} \\ \frac{-2}{3} & \frac{2}{9} \end{pmatrix}$$

Et donc:

$$U = (I_2 - A)^{-1}B = \begin{pmatrix} \frac{-2}{3} & \frac{-1}{9} \\ \frac{-2}{3} & \frac{2}{9} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{-13}{9} \\ \frac{-10}{9} \end{pmatrix}$$

La suite (U_n) constante cherchée est donc :

$$(U_n) = \begin{pmatrix} \frac{-13}{9} \\ \frac{-10}{9} \end{pmatrix}$$

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales