L'ESCALIFR CONVERGENT

<u>Commentaire</u>: Découvrir la méthode de la représentation en escalier d'une suite pour conjecturer sa convergence.

Partie 1

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = (x-2)e^{-x} + 2$.

- 1) Effectuer une étude complète la fonction f sur $[0; +\infty[$: variations, limites aux bornes, tangente(s) horizontale(s), asymptote(s), ... On présentera les résultats dans un tableau de variations.
- 2) Représenter dans un repère la fonction f sur l'intervalle [0 ; 4]. On prendra 5 cm pour 1 unité sur les deux axes.

Partie 2

On considère la suite (u_n) définie par $u_0 = 0.5$ et pour tout entier n, $u_{n+1} = (u_n - 2)e^{-u_n} + 2$. On a ainsi pour tout entier n, $u_{n+1} = f(u_n)$.

- 1) Pour cette question, on complètera dans le repère de la **partie 1** et on laissera **tous** les traits de construction :
 - Placer u₀ sur l'axe des abscisses.
 - En utilisant la courbe représentative de la fonction f, placer $u_1 = f(u_0)$ sur l'axe des ordonnées.
 - Placer alors u_1 sur l'axe des abscisses. On s'aidera de la droite d'équation y = x.
 - En utilisant la courbe représentative de la fonction f, placer $u_2 = f(u_1)$ sur l'axe des ordonnées.
 - Placer alors u_2 sur l'axe des abscisses. On s'aidera de la droite d'équation y = x.
 - Poursuivre de la même manière pour placer u₃ et u₄ sur l'axe des abscisses.
- 2) Quelle conjecture permet d'établir la construction précédente ?

Partie 3

- 1) Démontrer par récurrence que pour tout entier n, on a : $0 \le u_n \le 2$.
- 2) Démontrer que la suite (u_n) est croissante.
- 3) En déduire la preuve du résultat conjecturé dans la partie 2.
- 4) Ecrire un algorithme qui donne le plus petit entier N tel que 1,99999 $\leq u_N$. Quel est cet entier ? On recopiera l'algorithme.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales