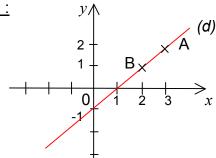
FONCTIONS AFFINES (Partie 2)

I. Fonction affine et droite associée

Exemple:



Soit (d) la représentation graphique de la fonction affine f(x) = x - 1Alors les coordonnées (x; y) d'un point M appartenant à la droite (d) vérifient y = x - 1

Les points A(3; 2), B(2; 1) et C($\frac{9}{2}$; 1) appartiennent-ils à la droite (d)?

$$2 = 3 - 1 \text{ donc } A \in (d)$$

$$1 = 2 - 1 \text{ donc } B \in (d)$$

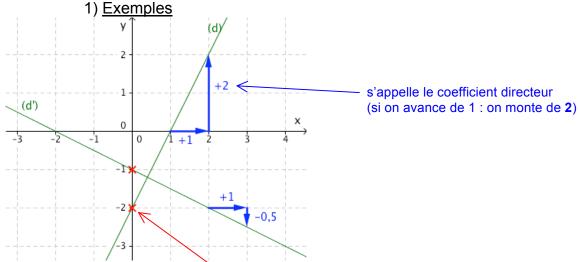
$$1 \neq \frac{9}{2} - 1 \operatorname{donc} C \notin (d)$$

Soit une fonction affine $f: x \mapsto ax + b$ représentée dans un repère par une droite d. Les coordonnées (x; y) d'un point M appartenant à d vérifient y = ax + b.

II. Coefficient directeur et ordonnée à l'origine

p166 act3

kemples



s'appelle l'ordonnée à l'origine (se lit sur l'axe des ordonnées : -2)

Pour (d): Le coefficient directeur est 2

L'ordonnée à l'origine est -2

On retrouve ainsi de la fonction f représentée par la droite (d) : f(x) = 2x - 2

Pour (d'): Le coefficient directeur est -0,5

L'ordonnée à l'origine est -1

On retrouve ainsi de la fonction g représentée par la droite (d') : g(x) = -0.5x - 1

2) <u>Définitions</u>

La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.

Remarques:

- Si le coefficient directeur est **positif** alors la droite « **monte** ». On dit que la fonction affine associée est **croissante**.
- Si le coefficient directeur est *négatif* alors la droite « *descend* ». On dit que la fonction affine associée est *décroissante*.

Exercices conseillés	En devoir
p177 n°84, 85,	p171 n°5, 11
86	p176 n°70, 71
p171 n°3, 4, 12,	
13, 14	
p184 n°158	
p176 n°68, 69	
p178 n°87, 88	
p186 n°170	

3) Accroissements

Propriété des accroissements :

Si $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points de la droite (d) représentant la fonction f définie par f(x) = ax + b alors :

$$a = \frac{y_B - y_A}{x_B - x_A}.$$

Conséquence:

f est une fonction affine de la forme f(x) = ax + b.

Si
$$x_1$$
 et x_2 sont deux nombres tels que $x_1 \neq x_2$, alors : $a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

Exercice conseillé

Démonstration de la propriété :

p184 n°154

Exemple:

On considère la fonction affine f telle que f(2) = 3 et f(5) = 4. Le coefficient directeur de la droite représentative de f est égal à :

$$\frac{f(2) - f(5)}{2 - 5} = \frac{3 - 4}{2 - 5} = \frac{-1}{-3} = \frac{1}{3}$$

<u>TP info:</u> « Fonctions affines » http://ymonka.free.fr/maths-et-tiques/telech/rep_fa.xls

III. Déterminer une fonction affine à partir de deux images

Méthode:

Déterminer la fonction affine f vérifiant : f(2) = 4 et f(5) = 1

f est une fonction affine de la forme f(x) = ax + bDéterminer f revient à trouver a et b.

On applique la propriété des accroissements pour trouver le coefficient directeur a :

$$a = \frac{f(2) - f(5)}{2 - 5} = \frac{4 - 1}{2 - 5} = \frac{3}{-3} = -1$$

donc: f(x) = -x + b

Or, par exemple : f(5) = 1

Donc: 1 = -5 + bSoit: b = 1 + 5 = 6

D'où : f(x) = -x + 6

Exercices conseillés	En devoir
p172 n°16 à 20	p172 n°21, 24
p175 n°52, 53	p177 n°80
p172 n°22, 23	
p177 n°81, 82	

